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Code Generation

• Generated output code must be correct

• Generated code must be of “good” quality
• Notion of good can be vary

• Should make efficient use of resources on the target machine

• Code generation should be efficient

• Generating optimal code is undecidable
• Compilers make use of well-designed heuristics
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Code Generation

• Input
• Intermediate representation (IR) generated by the front end 

• Linear IRs like 3AC or stack machine representations 

• Graphical IRs also work 

• Symbol table information

• Assumptions
• Code generation does not bother with any error checking 

• Code generation assumes that names in the IR can be operated by target 
machine instructions 
• For example, bits, integers, and floats
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Code Generation

• Output
• Absolute machine code

• Generated addresses are fixed and works when loaded at fixed locations in memory

• Efficient to execute, now primarily used in embedded systems

• Relocatable machine code
• Code can be broken down into separate sections and loaded anywhere in memory that 

meets size requirements

• Allows for separate compilation, but requires a separate linking and loading phase

• Assembly language
• Simplifies code generation, but requires assembling the generated code
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Steps in Code Generation

• Compiler backend performs three steps to translate IR to executable 
code
• Instruction selection

• Choose appropriate target machine instructions

• Register allocation
• Decide what values to keep in which registers

• Instruction scheduling
• Decide in what order to schedule the execution of instructions

• Memory management 
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Instruction Selection

• Complexity arises because each IR instruction can be translated in 
several ways

• Target ISA influences instruction selection
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a = a + 1

LD R0, a
ADD R0, R0, #1
ST a, R0

INC a



Instruction Selection

• Target features
• Scalar RISC machine – simple mapping from IR to assembly

• CISC machine – may need to fuse multiple IR operations for effectively using 
CISC instructions

• Stack machine – need to translate implicit names and destructive instructions 
to assembly

• Other factors are IR level, speed of instructions, energy consumption 
and space overhead
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Possible Idea for Instruction Selection

• Devise a target code skeleton for every 
3AC IR instruction

• Replace every 3AC instruction with the 
skeleton
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x = y + z
LD R0, y
ADD R0, R0, z
ST x, R0

a = b + c

d = a + e

??

??



Instruction Selection

• Possible idea
• Devise a target code skeleton for every 

3AC IR instruction

• Replace every 3AC instruction with the 
skeleton
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x = y + z
LD R0, y
ADD R0, R0, z
ST x, R0

a = b + c

d = a + e

LD R0, b

ADD R0, R0, c

ST a, R0

LD R0, a

ADD R0, R0, e

ST d, R0



Instruction Selection

• Possible idea
• Devise a target code skeleton for every 

3AC IR instruction

• Replace every 3AC instruction with the 
skeleton
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x = y + z
LD R0, y
ADD R0, R0, z
ST x, R0

a = b + c

d = a + e

LD R0, b

ADD R0, R0, c

ST a, R0

LD R0, a

ADD R0, R0, e

ST d, R0



Register Allocation

• Instructions operating on register operands are more efficient 

• Register allocation
• Choose which variables will reside in registers

• Register assignment
• Choose which registers to assign to each variable

• Finding an optimal assignment of registers to variables is NP-
complete
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Register Allocation

• Architectures may impose restrictions on usage of registers

• For example, architectures such as IBM 370 may require register pairs 
to be used for some instructions
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MUL x, y
• x is in the even register, y is in the odd register
• Product occupies the entire even/odd register 

pair

DIV x, y

• 64-bit dividend occupies the even/odd register 
pair

• Even register holds the remainder, odd register 
the quotient



Instruction Scheduling

• Order of evaluating the instructions also affect the efficiency of the 
target code 

• Selecting the best order is a NP-complete problem
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Example Target Machine

• Efficient code generation requires good understanding of the target 
ISA

• Assumptions
• Three-address machine, byte-addressable with four-byte words

• n general-purpose registers
• OP dst, src1, src2; LD dst addr; ST dst, src; BR L; Bcondr L;
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Addressing Modes

• Specifies how to interpret the operands of an instruction
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Mode Form Address Example

absolute M M LD R0, M

register R R ADD R0, R1, R2

indexed c(R) c + contents(R) LD R1, 4(R0)

indirect register *R contents(R) LD R1, *R0

indirect indexed *c(R) contents(c + contents(R)) LD R1, *100(R0)

literal #c c LD R1, #1



Few Examples
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𝑥 = 𝑦 − 𝑧

LD 𝑅1, 𝑦
LD 𝑅2, 𝑧
SUB 𝑅1, 𝑅1, 𝑅2
ST 𝑥, 𝑅1

// R1 = y
// R2 = z
// R1 = R1 – R2 
//  x = R1

𝑏 = 𝑎[𝑖]

LD 𝑅1, 𝑖
MUL 𝑅1, 𝑅1, 8
LD 𝑅2, 𝑎(𝑅1)
ST 𝑏, 𝑅2

// R1 = i
// R1 = R1 * 8
// R2 = c(a + c(R1))

𝑎 𝑗 = 𝑐

LD 𝑅1, 𝑐
𝐿𝐷 𝑅2, 𝑗
MUL 𝑅2, 𝑅2, 8
ST 𝑎 𝑅2 , 𝑅1

// R1 = c
// R2 = j
// R2 = R2 * 8

𝑥 =∗ 𝑝

LD 𝑅1, 𝑝
𝐿𝐷 𝑅2, 0(𝑅1)
ST 𝑥, 𝑅2

// R1 = p
// R2 = c(0+c(R1)
// x = R2

𝑥 =∗ 𝑝

LD 𝑅1, 𝑝
𝐿𝐷 𝑅2, 0(𝑅1)
ST 𝑥, 𝑅2

// R1 = p
// R2 = y
// c(0+c(R1) = R2

if 𝑥 < 𝑦 goto 𝐿

LD 𝑅1, 𝑥
LD 𝑅2, 𝑦
SUB 𝑅1, 𝑅1, 𝑅2
BLTZ 𝑅1,𝑀

// R1 = x
// R2 = y
// R1 = R1 – R2
// if R1 < 0 JMP M



Runtime Storage Management

• Let us consider the following 3AC 
• call callee; return; halt; action

• Assume that the first location in the activation record of the callee
stores the return address of the caller
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Static Allocation

call callee ST 𝑐𝑎𝑙𝑙𝑒𝑒. 𝑠𝑡𝑎𝑡𝑖𝑐𝐴𝑟𝑒𝑎, #ℎ𝑒𝑟𝑒 + 20
BR 𝑐𝑎𝑙𝑙𝑒𝑒. 𝑐𝑜𝑑𝑒𝐴𝑟𝑒𝑎

return callee BR ∗𝑐𝑎𝑙𝑙𝑒𝑒. 𝑠𝑡𝑎𝑡𝑖𝑐𝐴𝑟𝑒𝑎



Determine Addresses in Target Code

• Need to generate code to manage activation records at runtime
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return address

arr

i

j

return address

buf

n

// code for c
action1
call p
action2
halt

// code for p
action3
return

3AC

0:

4:

56:

60:

Activation record for c 
(64 Bytes)

0:

4:

84:

Activation record for p 
(88 Bytes)



Static Allocation

// code for c 

100: ACTION1

120: ST 364, #140 // save return address 140 

132: BR 200 // call p 

140: ACTION2

160: HALT

// code for p

200: ACTION3

220: BR *364 // return to address saved in
location 364 

// 300-363 hold activation 
record for c 

300: // return address 

304: // local data for c 

// 364-451 hold activation
record for p 

364: // return address

368: // local data for p
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Stack Allocation
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// code for s
action1
call q
action2
halt

// code for p
action3
return

3AC

// code for q
action4
call p
action5
call q
action6
call q
return

Code for first procedure

LD SP, #𝑠𝑡𝑎𝑐𝑘𝑆𝑡𝑎𝑟𝑡
code
HALT

// initialize the stack

// terminate execution

Code for procedure call

ADD SP, SP, #𝑐𝑎𝑙𝑙𝑒𝑟. 𝑟𝑒𝑐𝑜𝑟𝑑𝑆𝑖𝑧𝑒
ST ∗SP, #ℎ𝑒𝑟𝑒 + 16
BR 𝑐𝑎𝑙𝑙𝑒𝑒. 𝑐𝑜𝑑𝑒𝐴𝑟𝑒𝑎

// increment stack pointer
// save pointer
// return to caller

Code for return sequence in the callee

BR ∗0(SP) // return to caller

Code for return sequence in the caller

SUB SP, SP, #𝑐𝑎𝑙𝑙𝑒𝑟. 𝑟𝑒𝑐𝑜𝑟𝑑𝑆𝑖𝑧𝑒 // decrement stack pointer



Stack Allocation
// code for s 

100: LD SP, #600 // initialize the stack

108: ACTION1 // code for action1

128: ADD SP, SP, #ssize // call sequence begins

136: ST *SP, #152 // push return address

144: BR 300 // call q

152: SUB SP, SP, #ssize // restore SP

160: ACTION2

180: HALT

// code for p

200: ACTION3

220: BR *0(SP) // return

// code for q 

300: ACTION4 // conditional jump to 456

320: ADD SP, SP, #qsize

328: ST *SP, #344 // push return address

336: BR 200 // call p 

344: SUB SP, SP, #qsize

352: ACTION5

372: ADD SP, SP, #qsize

380: BR *SP, #396 // push return address

388: BR 300 // call q

396: SUB SP, SP, #qsize

404: ACTION6

424: ADD SP, SP, #qsize

432: ST *SP, #448 // push return address

440: BR 300 // call q 

448: SUB SP, SP, #qsize

456: BR *0(SP) // return

600: // stack starts hereCS 335 Swarnendu Biswas



Basic Blocks and Flow Graphs
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Basic Block

• Maximal sequence of consecutive statements in which flow of control 
enters at the beginning and leaves at the end 
• No jumps into the middle of the block

• No branch instructions other than the end

• Consider the 3AC instruction 𝐼: 𝑥 = 𝑦 + 𝑧

• 𝐼 defines 𝑥 and uses 𝑦 and 𝑧

• A name in a basic block (BB) is live at a given point if its value is used 
after that point
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t1 = a * a
t2 = a * b
t3 = 2 * t2
t4 = t1 + t3
t5 = b * b
t6 = t4 + t5



Identifying Basic Blocks (BBs)

• Input
• A sequence of 3AC

• Output
• List of BBs with each 3AC in exactly one BB

• Algorithm
• Identify the leaders which are the first statements in a BB

1. The first statement is a leader
2. Any statement that is the target of a conditional or unconditional goto is a leader
3. Any statement that immediately follows a conditional or unconditional goto is a leader

• For each leader, its BB consists of the leader and all instructions up to but not 
including the next leader or the end of the program
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Identifying BBs

begin

prod = 0

i = 1

do begin

prod = prod + a[i] * b[i]

end

while i <= 20

end

1. prod = 0

2. i = 1

3. t1 = 4 * i

4. t2 = a[t1]

5. t3 = 4 * i

6. t4 = b[t3]

7. t5 = t2 * t4
8. t6 = prod + t5
9. prod = t6
10. t7 = i + 1

11. i = t7
12. if i <= 20 goto (3)
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Identifying BBs

for i from 1 to 10 do
for j from 1 to 10 do

a[i,j] = 0.0
for i from 1 to 10 do

a[i,i]=1.0

1) i = 1

2) j= 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 – 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1

11) if i <= 10 goto (2)

12) i = 1

13) t5 = i – 1

14) t6 = 88 * t5

15) a[t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)
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Identifying BBs

for i from 1 to 10 do
for j from 1 to 10 do

a[i,j] = 0.0
for i from 1 to 10 do

a[i,i]=1.0

1) i = 1  // Leader

2) j= 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 – 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1

11) if i <= 10 goto (2)

12) i = 1

13) t5 = i – 1

14) t6 = 88 * t5

15) a[t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)
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Intra-Block Transformations

• Expressions are values of names that are live on exit from a BB

• Two BBs are equivalent if they compute the same set of expressions

• Local transformations on BBs
• Structure-preserving and algebraic transformations

• Should not change the set of expressions computed by a block
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Structure-Preserving Transformations

• Common subexpression elimination 

• Dead code elimination
• Remove statements that define variables that are dead

• Renaming temporary variables
• Can always transform a BB into an equivalent block where 

each statement that defines a temporary uses a new name
• Such a BB is called a normal-form block

• Interchange of statements
• Normal-form blocks permits statement interchanges without 

affecting the value of the block
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a = b + c
b = a – d
c = b + c
d = a - d

a = b + c
b = a – d
c = b + c
d = b

t1 = b + c
t2 = x + y



Computing Next-Use Information

• Knowing when the value of a variable will be used next is import for 
generating good code

• Suppose a statement 𝐼 defines 𝑥

• If a statement 𝐽 uses 𝑥 as an operand, and control can flow from 𝐼 to 𝐽
along a path where 𝑥 is not redefined, then 𝐽 uses the value of 𝑥
defined at 𝐼
• 𝑥 is live at statement 𝐼
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Determining Liveness and Next Use 
Information
• Input

• A BB (say 𝐵) of 3AC 

• Assume symbol table shows all non-temporary variables in 𝐵 as live on exit

• Output
• Liveness and next use information for each statement 𝐼: 𝑥 = 𝑦 + 𝑧 in 𝐵

• Algorithm
• Start at the last statement in 𝐵. For each statement 𝐼: 𝑥 = 𝑦 + 𝑧 in 𝐵

1. Attach to 𝐼 the next use and liveness information for 𝑥, 𝑦, and 𝑧 in the symbol table 

2. Set 𝑥 to “not live” and “no next use” in the symbol table

3. Set 𝑦 and 𝑧 to live and the next uses of 𝑦 and 𝑧 to 𝐼
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Control Flow Graph (CFG)

• Graphical representation of control 
flow during execution
• An edge represents possible transfer of 

control between BBs

• Each node represents a statement or a 
BB

• Dummy entry and exit nodes are often 
added

• Used for compiler optimizations and 
static analysis
• Instruction scheduling, global register 

allocation

CS 335 Swarnendu Biswas

straight-line 
code

predicate loop iteration



Example of a CFG

int main() {

int marks = 63, grade = 0;

if (i >= 80) 

grade = 10; 

else if (i >= 60) 

grade = 8;

else if (i >= 40) 

grade = 6;

else 

grade = 4;

printf(“Grade %d", grade);

return 0;

}
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Entry

int marks = 63, 
grade = 0;
if (i >= 80) 

grade = 10

grade = 6

grade = 4

grade = 8

if (i >= 60)

if (i >= 40)

printf(“Grade 
%d", grade);

Exit

True

False

False

True

True

False



Control Flow Graph (CFG)
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prod = 0
i = 1 B1

t1 = 4 * i
t2 = a[t1]
t3 = 4 * i
t4 = b[t3]
t5 = t2 * t4
t6 = prod + t5
prod = t6
t7 = i + 1
i = t7
if i <= 20 goto B2

B2

1. prod = 0

2. i = 1

3. t1 = 4 * i

4. t2 = a[t1]

5. t3 = 4 * i

6. t4 = b[t3]

7. t5 = t2 * t4
8. t6 = prod + t5
9. prod = t6
10. t7 = i + 1

11. i = t7
12. if i <= 20 goto (3)



Loops in a CFG

• A set of CFG nodes 𝐿 form a loop 
if that 𝐿 contains a node 𝑒 called 
loop entry such that 
• 𝑒 is not the Entry node,

• No node in 𝐿 besides 𝑒 has a 
predecessor outside 𝐿

• Every node in 𝐿 has a nonempty 
path to 𝑒 that is completely within 
𝐿
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B1

B2

prod = 0
i = 1

t1 = 4 * i
t2 = a[t1]
t3 = 4 * i
t4 = b[t3]
t5 = t2 * t4
t6 = prod + t5
prod = t6
t7 = i + 1
i = t7
if i <= 20 goto B2



Loops in a CFG

• There is a unique entry 
• Only way to reach a node in 𝐿

from outside the loop is through 𝑒

• All nodes in the group are 
strongly connected
• There is a path from any node in 

the loop to any other loop

• Path is wholly-contained within 
the loop
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B1

B2

prod = 0
i = 1

t1 = 4 * i
t2 = a[t1]
t3 = 4 * i
t4 = b[t3]
t5 = t2 * t4
t6 = prod + t5
prod = t6
t7 = i + 1
i = t7
if i <= 20 goto B2



Example CFG
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1) i = 1  // Leader

2) j= 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 – 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1

11) if i <= 10 goto (2)

12) i = 1

13) t5 = i – 1

14) t6 = 88 * t5

15) a[t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)

B3

i = 1

t5 = i – 1
t6 = 88 * t5
a[t6] = 1.0
i = i + 1
if i <= 10 goto (13)

Exit

t1 = 10 * i
t2 = t1 + j
t3 = 8 * t2
t4 = t3 – 88
a[t4] = 0.0
j = j + 1
if j <= 10 goto (3)

i = i + 1
if i <= 10 goto (2)

i = 1

j = 1

Entry

B1

B2

B4 B5

B6



Optimizing BBs
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Example 3AC

t1 = 4 * i

t2 = a[t1]

t3 = 4 * i

t4 = b[t3]

t5 = t2 * t4
t6 = prod + t5
prod = t6
t7 = i + 1

i = t7
if i <= 20 goto (1)
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prod0

a b 4 i0

20

1

*

+

+

<=

t6, prod

* t5

t7, it1, t3

[ ] t4[ ] t2 (1)



Representing BBs with DAGs

• Rules
• Initial values for each variable is represented by a node

• Leave nodes are labeled with variable names or constants

• A node 𝑁 is associated with each statement 𝑠 in a BB
• Children of 𝑁 correspond to statements that last define the operands used in 𝑠

• Inner nodes are labeled by an operator symbol
• Node 𝑁 is labeled by the operator applied at 𝑠

• Nodes optionally have a sequence of identifiers for labels

• Output nodes are those variables that are live on exit

• Each BB node in a CFG can be represented with a DAG
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Constructing a DAG

• Input
• A basic block (BB)

• Output
• A DAG for the BB with the following information

• a label for each node (id for leaf nodes and operator symbols for interior nodes)

• a list of identifiers (not constants) for each node

• Assumption
• Three kinds of 3AC: (i) 𝑥 = 𝑦 op 𝑧, (ii) 𝑥 = op 𝑦, and (iii) 𝑥 = 𝑦
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Constructing a DAG

• Steps
• For each statement in the BB

1. If 𝑛𝑜𝑑𝑒(𝑦) is undefined, create a leaf labeled 𝑦 and set 𝑛𝑜𝑑𝑒(𝑦) to the new node
• For case (i), create a leaf labeled 𝑧 and set 𝑛𝑜𝑑𝑒(𝑧) to the new node

2. For case (i), check if there is a node in the DAG labeled op, with left child 𝑛𝑜𝑑𝑒(𝑦) and 
right child 𝑛𝑜𝑑𝑒(𝑧)
• If not, then create a node

3. For case (ii), check if there is a node labeled op with 𝑛𝑜𝑑𝑒(𝑦) as the only child
• If not, then create a node

4. Delete 𝑥 from the list of identifiers for 𝑛𝑜𝑑𝑒(𝑥). Append 𝑥 to the list of identifiers for 
the node and set 𝑛𝑜𝑑𝑒(𝑥) to 𝑛
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Optimization of BBs

• Code optimization can lead to substantial improvement in running 
time and/or energy consumption

• Global optimization analyzes control and data flow among BBs
• Performs control flow, data flow, data dependence analysis

• Local or intra-BB optimizations can also provide significant 
improvements

• DAG is a useful data structure for implementing transformations on 
BBs
• Allows detecting determining common sub-expressions
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Local Optimizations in a BB

Local common subexpression elimination

• Instructions compute a value that has already been computed

Dead code elimination

• Instructions compute a value that is never used

Statement reordering

• Reorder statements that with no dependence

• May improve latency of accesses and register usage

Algebraic simplification

• Apply algebraic laws to simplify computation

CS 335 Swarnendu Biswas



Local Common Subexpressions
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a = b + c
b = a - d
c = b + c
d = a - d

b0 c0

a

b,d

d0+

-

+

a = b + c
b = b - d
c = c + d
d = b + c

+

b0 c0 d0

++ -a b c

e



Dead Code Elimination

• Delete a root node from the DAG if it 
has no live variables

• Repeat till there are no such nodes

• Assume a and b are live but c and e
are not live 
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a = b + c
b = b - d
c = c + d
d = b + c

+

b0 c0 d0

++ -a b c

e



Code Generation Algorithm
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Code Generation Strategy

• For each 3AC,
• Identify variables that need to be loaded into registers

• Load the variables into registers

• Generate code for the instruction

• Generate a store if the result needs to be saved into memory
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Challenges in Code Generation

a = b + c

ADD Rj, Ri b is in Ri, c is in Rj, b is no longer 
live

ADD c, Ri b is in Ri, b is no longer live

MOV c, Rj
ADD Rj, Ri

b is in Ri, b is no longer live
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Usually there can be numerous cases to consider
• Properties of the operator (for example, commutativity) can add to the complexity



Code Generation Strategy

• Goal: Generate target code for a sequence of 3AC

• Assumptions
• Track whether variables are in registers

• Every 3AC operator has an equivalent operator in the target language

• Computed values can reside in registers and only needs to be saved when 
1. The register is required for another computation,

2. Or just before a procedure call, jump, or a labelled statement
• Implies every register must be saved before the end of a BB
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Register and Address Descriptors

Register descriptor

• Keep track of what name is stored in each register

• Consulted whenever a new register is needed

• Each register holds the value of zero or more names at any time during execution

Address descriptor

• Keeps track of the location(s) where the current value of a name can be found at 
runtime

• Location can be a register, a stack location, a memory address, or some 
combination of these

• Information can be stored in the symbol table
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Code Generation Algorithm

• For each 3AC instruction 𝐼 of the form 𝑥 = 𝑦 op 𝑧

• Invoke function 𝑔𝑒𝑡𝑟𝑒𝑔(𝐼) to select registers 𝑅𝑥 , 𝑅𝑦 , and 𝑅𝑧
• If 𝑦 is not in 𝑅𝑦 according to the address descriptor, then generate instruction 
LD 𝑅𝑦, 𝑦

′

• 𝑦′ is one from the current locations of 𝑦

• Prefer a register for 𝑦′ if it exists

• Perform the same steps for 𝑧

• Generate the instruction ADD 𝑅𝑥, 𝑅𝑦, 𝑅𝑧
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Code Generation for Copy Instruction 𝑥 = 𝑦

• 𝑦 is in a register 
• Change the address and register descriptors to indicate that 𝑥 is now in the 

register originally holding 𝑦

• If 𝑦 has no next use and is not live on exit from the BB, the register no longer 
holds the value of 𝑦

• 𝑦 is in memory
• Invoke 𝑔𝑒𝑡𝑟𝑒𝑔 to find a register to load 𝑦, make that register the location for 
𝑥

• Alternatively, generate MOV 𝑦, 𝑥 instruction if the value of 𝑥 has no next use 
in the BB
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Updating Descriptors

• For an instruction LD 𝑅, 𝑥,
• Change the register descriptor for 𝑅 so it holds only 𝑥

• Change the address descriptor for 𝑥 by adding register 𝑅 as an additional 
location

• For instruction ST 𝑥, 𝑅, change the address descriptor for 𝑥 to include 
its own memory location
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Updating Descriptors

• For an instruction such as ADD 𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧, implementing a 3AC 𝑥 =
𝑦 + 𝑧,
• Change the register descriptor for 𝑅𝑥 so that it holds only 𝑥

• Change the address descriptor for 𝑥 so that its only location is 𝑅𝑥
• The memory location for 𝑥 is no longer in the address descriptor for 𝑥

• Remove 𝑅𝑥 from the address descriptor of any variable other than 𝑥

• For a copy instruction 𝑥 = 𝑦, remember to 
• Add 𝑥 to the register descriptor for 𝑅𝑦
• Change the address descriptor for 𝑥 so that its only location is 𝑅𝑦
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Defining Function 𝑔𝑒𝑡𝑟𝑒𝑔()

• Input
• 3AC 𝐼: 𝑥 = 𝑦 op 𝑧

• Output
• Returns registers to hold the value of 𝑥, 𝑦, and 𝑧
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Defining Function 𝑔𝑒𝑡𝑟𝑒𝑔()

• If 𝑦 is in a register, then return a register containing 𝑦 as 𝑅𝑦

• If 𝑦 is not in a register, but there is an empty register available, then 
pick one such register as 𝑅𝑦

• If 𝑦 is not in a register and no empty register is available
• Let 𝑅 be a candidate register and suppose 𝑣 is one of the variables stored in 𝑅

• If the address descriptor for 𝑣 says that 𝑣 is somewhere else beside 𝑅, then 
choose 𝑅

• Otherwise if 𝑣 is 𝑥, and 𝑥 is not an operand of 𝐼 (i.e., 𝑥 ≠ 𝑧), then choose 𝑅

• Otherwise if 𝑣 is not used later, then choose 𝑅

• Else, generate ST 𝑣, 𝑅 (called a register spill)
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Defining Function 𝑔𝑒𝑡𝑟𝑒𝑔()

• 𝑅 may hold several variables, so we need to repeat for each such 
variable

• Compute a score for 𝑅
• Score is the number of store instructions generated 

• Pick a register with the lowest score

• We need to consider similar issues for 𝑧 and 𝑅𝑧
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Defining Function 𝑔𝑒𝑡𝑟𝑒𝑔()

• Consider selection of a register 𝑅𝑥 for 𝑥
• A register that holds only 𝑥 is always an acceptable choice for 𝑅𝑥

• If 𝑦 is not used after instruction 𝐼, and 𝑅𝑦 holds only 𝑦 after being loaded, 
then 𝑅𝑦 can also be used for 𝑅𝑥

• Perform similar checks with 𝑅𝑧 if required

• If 𝐼 is a copy instruction, then always choose 𝑅𝑦
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Code Generation Example
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3AC Generated Code
Register 

Descriptor
Address Descriptor

R1 R2 R3 a b c d t u v

𝑎 𝑏 𝑐 𝑑

𝑡 = 𝑎 − 𝑏
LD 𝑅1, 𝑎
LD 𝑅2, 𝑏
SUB 𝑅2, 𝑅1, 𝑅2

𝑎 𝑡 𝑎, 𝑅1 𝑏 𝑐 𝑑 𝑅2

𝑢 = 𝑎 − 𝑐
LD 𝑅3, 𝑐
SUB 𝑅1 𝑅1, 𝑅3

𝑢 𝑡 𝑐 𝑎 𝑏 𝑐, 𝑅3 𝑑 𝑅2 𝑅1

𝑣 = 𝑡 + 𝑢 ADD 𝑅3, 𝑅2, 𝑅1

𝑢 𝑡 𝑣 𝑎 𝑏 𝑐 𝑑 𝑅2 𝑅1 𝑅3

𝑎 = 𝑑 LD 𝑅2, 𝑑

𝑢 𝑎, 𝑑 𝑣 𝑅2 𝑏 𝑐 𝑑, 𝑅2 𝑅1 𝑅3



Code Generation Example
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3AC Generated Code
Register 

Descriptor
Address Descriptor

R1 R2 R3 a b c d t u v

𝑢 𝑎, 𝑑 𝑣 𝑅2 𝑏 𝑐 𝑑, 𝑅2 𝑅1 𝑅3

𝑑 = 𝑣 + 𝑢 ADD 𝑅1, 𝑅3, 𝑅1

𝑑 𝑎 𝑣 𝑅2 𝑏 𝑐 𝑅1 𝑅3

exit
ST 𝑎, 𝑅2
ST 𝑑, 𝑅1

𝑑 𝑎 𝑣 𝑎, 𝑅2 𝑏 𝑐 𝑑, 𝑅1 𝑅3



Code Sequences for Indexed and Pointer 
Assignments

3AC 𝒊 in register 𝑹𝒊 𝒊 in memory 𝑴𝒊 𝒊 in Stack

𝑎 = 𝑏[𝑖] MOV 𝑏 𝑅𝑖 , 𝑅 MOV 𝑀𝑖, 𝑅
MOV 𝑏 𝑅 , 𝑅

MOV 𝑆𝑖 𝐴 , 𝑅
MOV 𝑏 𝑅 , 𝑅

𝑎 𝑖 = 𝑏 MOV 𝑏, 𝑎(𝑅𝑖) MOV 𝑀𝑖, 𝑅
MOV 𝑏, 𝑎(𝑅)

MOV 𝑆𝑖 𝐴 , 𝑅
MOV 𝑏, 𝑎(𝑅)
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3AC 𝒑 in register 𝑹𝒑 𝒑 in memory 𝑴𝒑 𝒑 in Stack

𝑎 = ∗𝑝 MOV ∗𝑅𝑝, 𝑎 MOV 𝑀𝑝, 𝑅
MOV ∗𝑅, 𝑅

MOV 𝑆𝑝 𝐴 , 𝑅
MOV ∗𝑅, 𝑅

∗𝑝 = 𝑏 MOV 𝑎, ∗𝑅𝑝 MOV 𝑀𝑝, 𝑅
MOV 𝑎, ∗𝑅

MOV 𝑎, 𝑅
MOV 𝑅, ∗𝑆𝑝(𝐴)



Instruction Selection by Tree 
Rewriting
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Tree Representation

• Consider the statement

𝑎 𝑖 = 𝑏 + 1
• Assume 𝑏 is in memory location 
𝑀𝑏

• Array 𝑎 is a local and is stored on 
the stack

• Width of array values are 1B 
• Addresses of locals 𝑎 and 𝑖 are 

given as constant offsets 𝐶𝑎 and 𝐶𝑖
from the register SP

• SP points to the beginning of the 
current activation record
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃



Tree Representation

• ind operator (denotes 
indirection) treats its argument 
as a memory address
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃



Tree Rewriting

• Target code can be generated by applying a sequence of tree-
rewriting rules to reduce the input tree to a single node

• Each rewrite rule is of the form 
𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ← 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 { 𝑎𝑐𝑡𝑖𝑜𝑛 }

where 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 is a single node, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 is a tree, and 𝑎𝑐𝑡𝑖𝑜𝑛 is 
a code fragment

• A set of tree rewriting rules is called a tree-translation scheme
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𝑅𝑖

+

𝑅𝑗

←𝑅𝑖 { ADD 𝑅𝑖 , 𝑅𝑖 , 𝑅𝑗 }

tiling of the 
subtree



Tree Rewriting Rules
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𝐶𝑎←𝑅𝑖 { ADD 𝑅𝑖 , #𝑎 } 𝑀𝑥←𝑅𝑖 { ADD 𝑅𝑖 , 𝑥 }

𝑀𝑥

=

𝑅𝑖

←𝑀 { ST 𝑥, 𝑅𝑖 }

𝑅𝑗

=←𝑀 { ST ∗𝑅𝑖 , 𝑅𝑖 }

𝑅𝑖

ind



Tree Rewriting Rules
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ind←𝑅𝑖 { LD 𝑅𝑖 , 𝑎(𝑅𝑗) }

𝑅𝑗𝐶𝑎

+

{ ADD 𝑅𝑖 , 𝑅𝑖 , 𝑎 𝑅𝑗 }

ind

+←𝑅𝑖

𝑅𝑖

𝑅𝑗𝐶𝑎

+

𝑅𝑖

+

𝑅𝑗

←𝑅𝑖 { ADD 𝑅𝑖 , 𝑅𝑖 , 𝑅𝑗 }

𝑅𝑖

+

𝐶1

←𝑅𝑖 { INC 𝑅𝑖 }



Code Generation by Tiling an Input Tree

• High-level steps in a tree-translation scheme
• Given an input tree, the templates in the tree-rewriting rules are applied to 

tile its subtrees

• If a template matches, replace the matching subtree with the replacement 
node of the rule
• Execute the action associated with the rule

• If the action contains a sequence of instructions, the instructions are emitted 

• Repeat the above steps until the tree is reduced to a single node, or until no 
more templates match

• Output of the tree-translation scheme is the instruction sequence 
generated as the input tree is reduced to a single node
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Example of Code Generation with Tree 
Rewriting
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃

??
??



Example of Code Generation with Tree 
Rewriting

CS 335 Swarnendu Biswas

+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃

LD 𝑅0, #𝑎
ADD 𝑅0, 𝑅0, SP
ADD 𝑅0, 𝑅0, 𝑖(SP)
LD 𝑅1, 𝑏
INC 𝑅1
ST ∗𝑅0, 𝑅1



Considerations during Tree Reduction

i. Performance of the tree matching algorithm impacts the efficiency 
of the code generation process at compile time

ii. Multiple templates may match during code generation

iii. Different match sequences of templates will lead to different code 
being generated which can impact efficiency

iv. If no template matches, then the code-generation process blocks
• Assume each operator in the intermediate code can be implemented by one 

or more target-machine instructions

• Assume there are sufficient registers to compute each tree node by itself
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Pattern Matching with LR Parsing

• Idea
• Convert the input tree to a string 

using prefix form 

• User a parsing mechanism for 
pattern matching

• Come up with a syntax-directed 
translation (SDT) as an alternate 
for tree rewriting rules
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃
Prefix representation 

= ind + + 𝐶𝑎𝑅𝑆𝑃 ind + 𝐶𝑖𝑅𝑆𝑃 +𝑀𝑏𝐶1



Pattern Matching with LR Parsing

• Idea
• Convert the input tree to a string 

using prefix form 

• User a parsing mechanism for 
pattern matching

• Come up with a syntax-directed 
translation (SDT) for a context-free 
grammar (CFG) as an alternate for 
tree rewriting rules
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃



SDT for Tree Rewriting
Production Semantic Action

𝑅𝑖 → c𝑎 { LD 𝑅𝑖 , #𝑎 }

𝑅𝑖 → 𝑀𝑥 { LD 𝑅𝑖 , 𝑥 }

𝑀 →= 𝑀𝑥𝑅𝑖 { ST 𝑥, 𝑅𝑖 }

𝑀 →= ind 𝑅𝑖𝑅𝑗 { ST ∗𝑅𝑖 , 𝑅𝑗 }

𝑅𝑖 → ind + c𝑎𝑅𝑗 { LD 𝑅𝑖 , 𝑎 𝑅𝑗 }

𝑅𝑖 → +𝑅𝑖 ind + c𝑎𝑅𝑗 { ADD 𝑅𝑖 , 𝑅𝑖 , 𝑎 𝑅𝑗 }

𝑅𝑖 → + 𝑅𝑖𝑅𝑗 { ADD 𝑅𝑖 , 𝑅𝑖 , 𝑅𝑗 }

𝑅𝑖 → + 𝑅𝑖c1 { INC 𝑅𝑖 }

𝑅 → sp

𝑀 → m
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• Terminal m represents a memory 
location 

• Terminal sp represents register SP
• Terminal c represents a constant



Instruction Selection via 
Peephole Optimization
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Peephole Optimization

• Insight: Find local optimizations by examining short sequences of 
adjacent operations
• The sliding window, or the peephole, moves over code

• Code in a peephole need not be contiguous

• Goal is to identify code patterns that can be improved

• Rewrite code patterns with improved sequence
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ST 𝑎, 𝑅0
LD 𝑅3, 𝑎

ST 𝑎, 𝑅0
MOV 𝑅3, 𝑅0

ADD 𝑅7, 𝑅0, 0
MUL 𝑅10, 𝑅4, 𝑅7

MULT 𝑅10, 𝑅4, 𝑅0



Peephole Optimization based Code 
Generation
• A naïve strategy is to use exhaustive search to match the patterns 

• Can work if number of patterns and the window size are small
• Does not work for modern complex ISAs

• Strategy in a modern peephole optimizer

• In an optimizer, the input and output language are the same

• With a different output language, the optimizer can be used for code 
generation
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Expander
IR → LLIR

Simplifier
LLIR → LLIR

Matcher
LLIR → ASM



Peephole Optimization based Code 
Generation
• Expander rewrites the IR to represent all the direct effects of an 

operation
• If ADD 𝑅0, 𝑅1, 𝑅2 sets a condition code, then the LLIR should include an 

explicit operation to set the condition code

• Simplifier performs limited local optimization on the LLIR in the 
window

• Matcher compares the simplified LLIR against the pattern library
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Example
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Op Arg1 Arg2 Result

× 2 𝑐 𝑡1

− 𝑏 𝑡1 𝑎 𝑟𝐴𝑅𝑃 16 @𝐺 12

+ +

ind

ind 2 ind

×

−+

←

𝑟𝐴𝑅𝑃 4

AST computes 𝑎 = 𝑏 − 2 × 𝑐
• 𝑎 is stored at offset 4 in the local AR 
• b stored as a call-by-reference parameter whose 

pointer is stored at offset – 16 from the ARP
• 𝑐 is at offset 12 from the label @𝐺



Example
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Op Arg1 Arg2 Result

× 2 𝑐 𝑡1

− 𝑏 𝑡1 𝑎

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20

𝑟𝐴𝑅𝑃 16 @𝐺 12

+ +

ind

ind 2 ind

×

−+

←

𝑟𝐴𝑅𝑃 4

Expand



Example
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Op Arg1 Arg2 Result

× 2 𝑐 𝑡1

− 𝑏 𝑡1 𝑎

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20

𝑟𝐴𝑅𝑃 16 @𝐺 12

+ +

ind

ind 2 ind

×

−+

←

𝑟𝐴𝑅𝑃 4

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟14 ← 𝑀(𝑟11 + 𝑟12)
𝑟15 ← 𝑟10 × 𝑟14
𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑀(𝑟𝐴𝑅𝑃 + 4) ← 𝑟20

Expand

Simplify

Assume a sliding 
window of size 3



Sequences Produced by the Simplifier
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𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12

𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12

𝑟11 ← @𝐺
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)

𝑟11 ← @𝐺
𝑟14 ← 𝑀(𝑟11 + 𝑟12)
𝑟15 ← 𝑟10 × 𝑟14

𝑟14 ← 𝑀(𝑟11 + 𝑟12)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16

𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Sequence 5

Sequence 6

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20
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𝑟15 ← 𝑟10 × 𝑟14
𝑟17 ← 𝑟𝐴𝑅𝑃 − 16
𝑟18 ← 𝑀(𝑟17)

𝑟15 ← 𝑟10 × 𝑟14
𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀(𝑟18)

𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15

𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4

𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21

𝑟20 ← 𝑟19 − 𝑟15
𝑟22 ← 𝑟𝐴𝑅𝑃 + 4
𝑀(𝑟22) ← 𝑟20

Sequence 7

Sequence 8

Sequence 9

Sequence 10

Sequence 11

Sequence 12

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20
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𝑟20 ← 𝑟19 − 𝑟15
𝑀(𝑟𝐴𝑅𝑃 + 4) ← 𝑟20

Sequence 13
𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20
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Op Arg1 Arg2 Result

× 2 𝑐 𝑡1

− 𝑏 𝑡1 𝑎

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20

𝑟𝐴𝑅𝑃 16 @𝐺 12

+ +

ind

ind 2 ind

×

−+

←

𝑟𝐴𝑅𝑃 4

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟14 ← 𝑀(𝑟11 + 𝑟12)
𝑟15 ← 𝑟10 × 𝑟14
𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑀(𝑟𝐴𝑅𝑃 + 4) ← 𝑟20

LD 𝑟10, 2
LD 𝑟11, @𝐺
LD 𝑟14, 12(𝑟11)
MUL 𝑟15, 𝑟10, 𝑟14
LD 𝑟18, −16(𝑟𝐴𝑅𝑃)
LD 𝑟19, 𝑟18
SUB 𝑟20, 𝑟19, 𝑟15
ST 4 𝑟𝐴𝑅𝑃 , 𝑟20

Expand

Simplify

M
at

ch
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𝑟14 ← 𝑀(𝑟11 + 𝑟12)
𝑟15 ← 𝑟10 × 𝑟14
𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑀(𝑟𝐴𝑅𝑃 + 4) ← 𝑟20

LD 𝑟10, 2
LD 𝑟11, @𝐺
LD 𝑟14, 12(𝑟11)
MUL 𝑟15, 𝑟10, 𝑟14
LD 𝑟18, −16(𝑟𝐴𝑅𝑃)
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Current State

• Modern peephole systems automatically generates a matcher from a 
description of a target machine’s instruction set

• Eases the work in retargeting the backend
i. Provide a new appropriate machine description to the pattern generator to 

produce a new instruction selector
ii. Change the LLIR sequences to match the new ISA
iii. Modify the instruction scheduler and register allocator to reflect the 

characteristics of the new ISA

• GCC uses a low-level IR Register-Transfer Language (RTL) for 
optimization and for code generation 
• The back end uses a peephole scheme to convert RTL into assembly code
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